Different Aggregation Behaviors of Tetra- (4-hydroxyphenyl) Porphyrin ($\mathbf{T H P P H}_{2}$) in the Inner Core and on the Surface of CTAB Micelles

Chen MA, Yun Hong ZHANG*, Chang Song FU, Qian Shu LI
School of Chemical Engineering and Materials Science, Beijing Institute of Technology, Beijing 100081

Abstract

The UV-Vis spectra of THPPH_{2} in CTAB micelles at pH 7.2 and pH 11.0 were analyzed to study the effect of micellar environments on the aggregation behaviors of this porphyrin.

Keywords: THPPH_{2}, CTAB micelles, aggregation, UV-Vis spectra.

It is hard to study the effects of different microenvironments on porphyrin aggregation because of its complex substituted groups. A trans-membrane process was realized by controlling bulk pH values for an amphiphilic porphyrin from the inner core to the surface of CTAB micelles ${ }^{1}$. Thus it is posible to study the different aggregation actions of the porphyrin in the inner core and on the surface of micelle.

Results and Discussion

The absorption spectra of THPPH_{2} at pH 7.2 have four Q bands at $516.8 \mathrm{~nm}, 555.7 \mathrm{~nm}$, 589.7 nm and 649 nm in Figure 1(A), with the maxma of the Soret band ($\lambda_{\max }$) at 420.4 nm . When the porphyrin concentration is below $1.0 \times 10^{-5} \mathrm{~mol}^{2} \mathrm{~L}^{-1}$, the half band width of the Soret band is 14.3 nm , which is reduced to 12.3 nm above $1.0 \times 10^{-5} \mathrm{~mol} . \mathrm{L}^{-1}$. THPPH_{2} follows Beer's law in Figure 2, indicating that THPPH_{2} is solubilized in the inner core of CTAB micelles ${ }^{1}$., the absorbance $v s$ concentration plot does not follow Beer's law above $1.0 \times 10^{-5} \mathrm{~mol} . \mathrm{L}^{-1}$, indicating the occurrence of porphyrin aggregation ${ }^{2}$. The effect of aggregation on the absorption spectra often exhibits a change of the half band width ${ }^{3}$ and a shift of the Soret band ${ }^{4}$. There is no shift of the Soret band in Figure $\mathbf{1}(\mathrm{A})$, but the narrowing of the half band width suggests the formation of highly ordered porphyrin aggregate ${ }^{3}$. This aggregate may be some kind between H - and J-aggregate, in which the monomeric molecules arrange in a dimension that the angle between the transition moment and the line joining the molecular centers is 54 degrees in Figure 3 (A), resulting in the constant gap of the energy level of the Soret band ${ }^{3}$.

THPPH ${ }_{2}$ has two Q bands at 585 nm and 667 nm in Figure 1 (B), suggesting that the two N atoms on the pyrrole rings are also deprotonized, and the porphyrin molecules have transferred from the inner core to the outer surface of CTAB micelle ${ }^{1}$. $\lambda_{\text {max }}$ is 435.7 nm at lower porphyrin concentrations. At $1.28 \times 10^{-5} \mathrm{~mol} . \mathrm{L}^{-1}$, there is a plateau of the Soret band, and $\mathrm{A}_{422.7}$ is slightly higher than $\mathrm{A}_{435.7}$, suggesting the aggregate formation although it still seems to follow Beer's law (Figure 2). At higher concentrations, the Soret band has gradually shifted to 422.7 nm , and the plot does not
follow Beer's law, which consistent with an aggregation of THPPH_{2} on the outer surface of CTAB micelles. This aggregate might be considered a face-to-face H -aggregate ${ }^{3}$ from the narrowing and the blue shift of the Soret band in Figure 3 (B).

Figure 1. UV-Vis spectra of THPPH_{2} in CTAB solutions

(A) at $\mathrm{pH} 7.2,10^{-7} \mathrm{c}\left[\mathrm{THPPH}_{2}\right] /\left(\mathrm{mol}^{-1}\right): a .1 ; b .2 ; c .4 ; d .8 ; e .16 ; f .32 ;$ g. $48 ; h .64 ; i .80 ; j .96 ; k$. 104;l. 112; m. 120; n.128, and (B) at pH11.0, $10^{-7} \mathrm{c}\left[\mathrm{THPPH}_{2}\right] /\left(\mathrm{mol}^{-1}\right): a .1 ; b .2 ; c .4 ; d .8 ; e .16$; f 32;g.48; h. 64; i. 96; j. 128; k. 192; l. 256; m. 320.

Figure 2. Dependence of THPPH_{2} concentration at pH7.2 ($\quad, \lambda \max =420.4 \mathrm{~nm})$ and $\mathrm{pH} 11.0\left(\nabla, \lambda_{1}=422.7 \mathrm{~nm} ; \square, \lambda_{2}=435.7 \mathrm{~nm}\right)$

Figure 3. Aggregation behaviors of THPPH_{2} in the inner core (A) and on the surface (B) of CTAB micelles

A
B

References

1. Y.H. Zhang, L. Guo, Q.S. Li, Y.Q. Wang, Chem.J. ChineseUniversities, 1997, 18, 1703.
2. W.M. Clark, J. Biol. Chem., 1940, 135, 590.
3. D.C. Barber, R.A. Freitag-Beeston, D.G. Whitten, J. Phys. Chem., 1991, 95, 4074.
4. N.C. Maiti, M. Ravikanth, S. Mazumdar, J. Phys.Chem., 1995, 99, 17192.

Received 6 March 2000

